ENGINEERING

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:
22317
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgementon part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	(a) Ans.	Attempt any FIVE of the following: List any four operations on data structure. Operations on data structure: - Insertion - Deletion - Searching - Sorting - Traversing - Merging	$\begin{gathered} \hline 10 \\ 2 \mathrm{M} \\ \\ \text { Any } \\ \text { four } \\ \text { operatio } \\ \text { ns }{ }^{1 / 2} M \\ \text { each } \end{gathered}$
	(b) Ans.	Enlist queue operation condition. 1. Queue Full 2. Queue Empty	2M Two operatio nal conditio ns $1 M$ each

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

(c) Ans.	Define: (i) Binary tree (ii) Binary search tree (i) Binary tree: It is a nonlinear data structure in which each non-leaf node can have maximum two child nodes as left child ad right child. (ii)Binary search tree: It is a nonlinear data structure in which left child of root node is less than root and right child of root node is greater than root.	2M Each correct definitio n 1M
(d) Ans.	Show the memory representation of stack using array with the help of a diagram. Consider stack contains five integer elements represented with an array A in which each element occupy 2 bytes memory. Array starts with base address of 2000.	2M Correct represen tation $2 M$
(e) Ans.	Define given two types of graph and give example. (i) Direct graph (ii) Undirected graph (i) Direct graph: A graph in which direction is associated with each edge is known as directed graph. Example:	Definitio n with example of each1M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

ENGINEERING

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code:
22317

		```{ int info; struct node *next; }*start=NULL; void main() { int m; clrscr(); printf("enter data value\n"); scanf("%d",&m); create_list(m); printf("enter data value\n"); scanf("%d",&m); addatbeg(m); display(); getch(); } void create_list(int data) { struct node *tmp,*q; tmp=malloc(sizeof(struct node)); tmp->info=data; tmp->next=NULL; start=tmp; } void addatbeg(int data) { struct node *tmp; tmp=malloc(sizeof(struct node)); tmp->info=data; tmp->next=start; start=tmp; } void display() {```	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)<br>(ISO/IEC - 27001-2005 Certified)

## SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code:
22317

	```struct node *q; if(start==NULL) { printf("list is empty\n"); } q=start; printf("list is:\n"); while(q!=NULL) { printf("%d\t",q->info); q=q->next; } }```	
(c) Ans.	Draw and explain construction of circular queue. A queue, in which the last node is connected back to the first node to form a cycle, is called as circular queue. The above diagram represents a circular queue using array. It has rear pointer to insert an element and front pointer to delete an element. It works in FIFO manner where first inserted element is deleted first. Initially front and rear both are initialized to -1 to represent queue empty. First element inserted in circular queue is stored at $0^{\text {th }}$ index position pointed by rear pointer. For the very first element, front pointer is also set to $0^{\text {th }}$ position. Whenever a new element is inserted in a queue rear pointer is incremented by one. If rear is pointing to max- 1 and no element is present at $0^{\text {th }}$ position then rear is set to $0^{\text {th }}$ position to continue cycle. Before inserting an element, queue full condition is checked. If rear is set to max-1 position and front is set to 0 then queue is full. Otherwise if rear $=$ front +1 then also queue is full.	Draw 1M Explana tion 3M

ENGINEERING
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:
22317

	If queue is full then new element cannot be added in a queue. For deletion, front pointer position is checked and queue empty condition is checked. If front pointer is pointing to -1 then queue is empty and deletion operation cannot be performed. If queue contains any element then front pointer is incremented by one to remove an element. If front pointer is pointing to max- 1 and element is present at $0^{\text {th }}$ position then front pointer is initialize to $0^{\text {th }}$ position to continue cycle. Circular queue has advantage of utilization of space. Circular queue is full only when there is no empty position in a queue. Before inserting an element in circular queue front and rear both the pointers are checked. So if it indicates any empty space anywhere in a queue then insertion takes place.	
(d) Ans.	Explain indegree and outdegree of a graph with example. Indegree of node: It is number of edges coming towards a specified node i.e. number of edges that have that specified node as the head is known as indegree of a node. Outdegree of node: It is number of edged going out from a specified node i.e. number of edges that have that specified node as the tail is known as outdegree of a node In undirected graph each edge is bidirectional so each edge coming towards node is also going out of that node. Due to this indegree and outdegree of a node is same number. In indirected graph, each edge is having direction associated with it, so indegree and outdegree depends on the direction. Example:- Indegree of node $A=1$ Outdegree of node $A=2$	Each termexplanat ion 1M Each example 1M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C' Subject Code: 22317			
		Indegree of node $B=3$ Outdegree of node $B=2$ Indegree of node $\mathrm{C}=2$ Outdegree of node $\mathrm{C}=1$ Indegree of node $\mathrm{D}=1$ Outdegree of node $\mathrm{D}=3$ Indegree of node $\mathrm{E}=2$ Outdegree of node $\mathrm{E}=1$	
3.	(a) Ans.	Attempt any THREE of the following: Write C program for performing following operations on array: insertion, display. \#include<stdio.h> \#include<conio.h> void main() \{ inta[10],x,i,n,pos; clrscr(); printf("Enter the number of array element\n"); scanf("\%d",\&n); printf("Enter the array with \%d elementln", n); for($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) scanf("\%d",\&a[i]); printf("Enter the key yalue and its position\n"); scanf("\%d\%d", \&x, \&pos); for $(\mathrm{i}=\mathrm{n} ; \mathrm{i}>=\operatorname{pos}, \mathrm{i}-\mathrm{-})$ \{ $\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{i}-1]$; \} $a[$ pos-1] $=x$; printf("Array elementln "); for $(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n}+1 ; \mathrm{i}++$) printf("\%d\t",a[i]); getch(); \}	12 4M Correct program 4M
	(b) Ans.	Evaluate the following postfix expression: $5,6,2,+, *, 12,4, /$, Show diagrammatically each step of evolution using stack.	4M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

3. $\mathrm{j}=2, \mathrm{i}=0$ since $\mathrm{a}[\mathrm{j}]>$ pivot do nothing array will remain same

Array elements	$\mathbf{2}$	$\mathbf{5 0}$	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

4. $\mathrm{j}=3 \mathrm{i}, \mathrm{i}=0$ since $\mathrm{a}[\mathrm{j}]>$ pivot do nothing array will remain same

Array elements	$\mathbf{2}$	$\mathbf{5 0}$	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

5. $\mathrm{j}=4$, since $\mathrm{a}[\mathrm{j}]<=$ pivot do, $\mathrm{i}++$ and swap(a[i],a[j])
$\mathrm{i}=1$

Array elements	$\mathbf{2}$	$\mathbf{3}$	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

6. $\mathrm{j}=5, \mathrm{i}=1$ since $\mathrm{a}[\mathrm{j}]>$ pivot do nothing array will remain same

Array elements	$\mathbf{2}$	$\mathbf{3}$	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

7. $\mathrm{j}=6, \mathrm{i}=1$ since $\mathrm{a}[\mathrm{j}]>$ pivot do nothing array will remain same

Array elements	$\mathbf{2}$	$\mathbf{3}$	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

8. $\mathrm{j}=7, \mathrm{i}-1$ since $\mathrm{a}[\mathrm{j}]>$ pivot do nothing array will remain same

Array elements	$\mathbf{2}$	$\mathbf{3}$	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317
9. $\mathrm{j}=8, \mathrm{i}-1$ since $\mathrm{a}[\mathrm{j}]>$ pivot do nothing array will remain same

Array elements	$\mathbf{2}$	$\mathbf{3}$	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

We come out of loop because j is now equal to high- 1 .
Finally we place pivot at correct position by swapping a[i+1] and a[h] (or pivot)
a[]$=\{2,3,5,22,50,39,49,25,18,6\} / / 6$ and 5 Swapped
Now, 5is at its correct place. All elements smaller than 5 are before it and all elements greater than 5 are afterit.
Similarly rest of the passes will be executed and will provide the following output
Output of pass1

Array elements	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	22	50	39	49	25	18	6
indexes	0	1	2	3	4	5	6	7	8	9

Pass2
A[]$=\{2,3\}$ pivot $=3$

Array elements	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$
indexes	0	1	2

a[]$=\{22,50,39,49,25,18,6\}$ pivot $=6$

Array elements	6	50	39	49	25	18	22
indexes	3	4	5	6	7	8	9

a[]$=\{50,39,49,25,18,22\}$ pivot $=22$

Array elements	18	22	49	25	50	39
indexes	4	5	6	7	8	9

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code:
22317

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code:
22317

	(1) With given dala tields, singly linked list is rreated as followes stort (2) Operation - Search a node 22 from the above sel a] Initially $q=$ start where q is a pointer of type struct node wed for troversing b] $q!=$ Nule and $p O_{S}=1$ $q \rightarrow$ data \neq key value ie $15 \neq 22$ Stom] $\therefore q=q \rightarrow$ next c] $91=$ NULL and pos $=2$ $\begin{aligned} & q-\text { data }=\text { key yatue } \\ & \text { ie } 20 \neq 22 \end{aligned}$ (लन्ता $\therefore q=q \rightarrow$ hext and pos $=3$ $q!=$ NULL and $p O S=3$ $\begin{aligned} & q \rightarrow \text { data }==\text { key value } \\ & i \cdot e 22=-22 \end{aligned}$ \therefore node 22 is located at position 3 search is sucuessfut.	Create linked list 1M Searchi ng node procedu re with diagram 3M
(d) Ans.	Evaluate the following prefix expression: - * +4325 show diagrammatically each step of evaluation using stack.	4M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Subject: Data Structure Using ' \({ }^{\prime}\) ' Subject Code:} \& 22317 \\
\hline \& \[
\begin{gathered}
\hline \text { (c) } \\
\text { Ans. }
\end{gathered}
\] \& \begin{tabular}{l}
Write an algorithm to count number of nodes in singly linked list. Let start is pointer variable which always stores address of first node in single linked list. If single linked list is empty then start will point to NULL. \\
q is pointer variable used to store address of nodes in single linked list. \\
Step 1: Start \\
Step 2: [Assign starting address of single linked list to pointer q] \(\mathrm{q}=\) start \\
Step 3: [Initially set count of nodes in Linked list as zero] count=0 \\
Step 4: [Check if Linked list empty or not] if start==NULL \\
Display "Empty Linked List" \\
go to step 6 . \\
Step 5: [Count number of nodes in single linked list] while q!=NULL \\
count++ and \\
\(\mathrm{q}=\mathrm{q}->\mathrm{next} ;\) \\
Step 6: Display count (total number of nodes in single linked list) \\
Step 7: stop
\end{tabular} \& \[
\begin{gathered}
\hline 6 \mathrm{M} \\
\\
\\
\text { Correct } \\
\text { algorith } \\
m 6 M
\end{gathered}
\] \\
\hline 6. \& (a)

Ans. \& | Attempt any TWO of the following: |
| :--- |
| Sort the following numbers in ascending order using Bubble sort. Given numbers: $29,35,3,8,11,15,56,12,1,4,85,5 \&$ write the output after each interaction. |
| Pass 1 |
| Enter no of elements :12 |
| Enter array elements :29 35381115561214855 |
| Unsorted Data: $29 \begin{array}{llllllllllll}29 & 35 & 8 & 11 & 15 & 56 & 12 & 1 & 4 & 85 & 5\end{array}$ | \& \[

$$
\begin{gathered}
12 \\
6 M
\end{gathered}
$$
\]

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code: 22317

	After pass 4: 3 8 11 12 1 $\mathbf{1 5}$ 4 29 5 35 56 85 After pass 4: 3 8 11 12 1 4 $\underline{\mathbf{1 5}}$ 29 5 35 56 85 After pass 4: 3 8 11 12 1 4 $\mathbf{1 5}$ $\underline{\mathbf{2 9}}$ 5 35 56 85 After pass 4: 3 8 11 12 1 4 15 5 $\underline{\mathbf{2 9}}$ 35 56 85 Pass 5 $\begin{array}{lllllllllllll}\text { After pass 5: } & 3 & 8 & 11 & 12 & 1 & 4 & 15 & 5 & 29 & 35 & 56 & 85 \\ \text { After pass 5: } & 3 & 8 & 11 & 12 & 1 & 4 & 15 & 5 & 29 & 35 & 56 & 85 \\ \text { After pass 5: } & 3 & 8 & 11 & \mathbf{1 2} & 1 & 4 & 15 & 5 & 29 & 35 & 56 & 85 \\ \text { After pass 5: } & 3 & 8 & 11 & \mathbf{1} & \mathbf{1 2} & 4 & 15 & 5 & 29 & 35 & 56 & 85 \\ \text { After pass 5: } & 3 & 8 & 11 & 1 & 4 & \mathbf{1 2} & 15 & 5 & 29 & 35 & 56 & 85 \\ \text { After pass 5: } & 3 & 8 & 11 & 1 & 4 & \mathbf{1 2} & \mathbf{1 5} & \mathbf{5} & 29 & 35 & 56 & 85 \\ \text { After pass 5: } & 3 & 8 & 11 & 1 & 4 & 12 & \mathbf{5} & \mathbf{1 5} & 29 & 35 & 56 & 85\end{array}$ Pass 6 $\begin{array}{lllllllllllll}\text { After pass 6: } & 3 & 8 & 11 & 1 & 4 & 12 & 5 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 6: } & 3 & 8 & \mathbf{1 1} & 1 & 4 & 12 & 5 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 6: } & 3 & 8 & \mathbf{1} & \underline{\mathbf{1 1}} & \mathbf{4} & 12 & 5 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 6: } & 3 & 8 & 1 & \mathbf{4} & \mathbf{1 1} & \mathbf{1 2} & 5 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 6: } & 3 & 8 & 1 & \mathbf{4} & \mathbf{1 1} & \mathbf{1 2} & 5 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 6: } & 3 & 8 & \mathbf{1} & 4 & \mathbf{1 4} & \mathbf{5} & \underline{\mathbf{1 2}} & 15 & 29 & 35 & 56 & 85 \\ & & & & & & & & & & & & \\ \text { Pass 7 } \\ \text { After pass 7: } & 3 & 8 & 1 & 4 & 11 & 5 & 12 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 7: } & 3 & 1 & 8 & 4 & 11 & 5 & 12 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 7: } & 3 & 1 & 4 & 8 & 11 & 5 & 12 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 7: } & 3 & 1 & 4 & 8 & \mathbf{1 1} & 5 & 12 & 15 & 29 & 35 & 56 & 85 \\ \text { After pass 7: } & 3 & 1 & 4 & 8 & \mathbf{5} & \underline{\mathbf{1 1}} & 12 & 15 & 29 & 35 & 56 & 85\end{array}$ Pass 8 After pass 12: $\quad \underline{\mathbf{1}} \quad 3 \quad 4 \quad 4 \quad 8 \quad 5 \quad 11 \quad 12 \quad 15 \quad 29 \quad 35 \quad 56$ Sorted elements are $1 \begin{array}{llllllllllll}3 & 4 & 8 & 5 & 11 & 12 & 15 & 29 & 35 & 56 & 85\end{array}$	
(b) Ans.	Evaluate the following postfix expression: 57+62-*	6M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code:
22317

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'
Subject Code:
22317

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

