

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.		Attempt any FIVE of the following:	10
	(a)	List any four operations on data structure.	2M
	Ans.	Operations on data structure:	
		• Insertion	Any
		Deletion	four
		• Searching	operatio
		• Sorting	$ns^{1/2}M$
		Traversing	each
		Merging	
	(b)	Enlist queue operation condition.	2M
	Ans.		
		1. Queue Full	Two
		2. Queue Empty	operatio
			nal
			conditio
			ns 1M
			each

Subject: Data Structure Using 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject Code:

e: 22317

(c)	Define:	2M
Ans.	 (i) Binary tree (ii) Binary search tree (i) Binary tree: It is a nonlinear data structure in which each non-leaf node can have maximum two child nodes as left child ad right child. (ii)Binary search tree: It is a nonlinear data structure in which left child of root node is less than root and right child of root node is greater than root. 	Each correct definitio n 1M
(d)	Show the memory representation of stack using array with the	2M
Ans.	help of a diagram. Consider stack contains five integer elements represented with an array A in which each element occupy 2 bytes memory. Array starts with base address of 2000. Index position \downarrow location \downarrow location \downarrow location \downarrow 2006 A[4] A[3] D 2005 A[2] C 2004 A[1] B 2002 A[0] A[0] A 2002	Correct represen tation 2M
(e) Ans.	 Define given two types of graph and give example. (i) Direct graph (ii) Undirected graph (i) Direct graph: A graph in which direction is associated with each edge is known as directed graph. 	2M
	Example:	Definitio n with example of each1M

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

SUPER OF TROPPOSE

Subject: Data Structure Using 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

-		
	(ii) Undirected graph: A graph in which the edges do not have any	
	direction associated with them is known as undirected graph.	
	Example:-	
	Eder	
	Node Edge	
	\prec / \frown	
	(A) <u> </u>	
	Υ Υ	
	\rightarrow \rightarrow	
	(D)(C)	
(f)	Differentiate between linear and non-linear data structures on	2M
(-)	any two parameters.	
Ans.	Sr. Linear data structure Non-linear data structure	
1 1150	No.	
	1 A data structure in which all A data structure in which all	Any two
	data elements are stored in a data elements are not stored	differen
		ces 1M
	sequence is known as linear in a sequence is known as data structure.	each
		eucn
	contiguous memory non-contiguous memory	
	locations inside memory. locations inside memory.	
	3 Example:- stack, queue Example:- tree, graph	
(g)	Convert the following infix expression to its prefix form using	2M
	stack $A + B - C * D/E + F$	
Ans.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

		+						
			Infix Expression	Read Character	Stack contents	Prefix Expression		
			A+B-C*D/E+F	F		F		
			A+B-C*D/E+	+	+	F		
			A+B-C*D/E	E	+	EF		
			A+B-C*D/	/		EF		
				· ·	1			
					+			
								~
		-	A+B-C*D	D		DEF		Correct
			M.D.C.D	2	/	DLI		prefix
					+			expressi
			A+B-C*	*		DEF		on2M
			A+B-C	С		C/DEF		
				Ŭ		0.DEI		
			A+B-	-		+*C/DEF		
			A+B	B		B+*C/DEF		
			1.5		-	DI CIDLI		
			A+	+	+	-B+*C/DEF		
			A	A	+	A-B+*C/DEF		
						+A-B+*C/DEF		
2.		Atte	empt any TH	REE of the	following:			12
	(a)	Exp	lain the worl	king of Bing	ry search with	an example.		4M
	Ans.					ay. Search method sta	orte	
	Alls.							
						y and compare the r		
		posi	tion element	with the sea	rch element. If a	a match is found then	nthe	
		sear	ch process en	ds otherwise	e divide the i/p l	ist into 2 parts. First p	part	
			-		-	ion element and second		Explana
						d position element.		-
		-			0	1		tion 2M
		sele	ct one of the	part depend	ing on search e	lement is less or grea	ater	
		than	mid position	n element a	nd calculate m	id position for selec	cted	
						vith search element.		
			• •	-		sion task the elemen	11 15	
		four	nd or division	of list gives	one element for	comparison.		
		Toc	calculate mid	element perf	form (lower + u	oper) / 2.		
				-	an array(initial			
				1	•	•		
		uppe	er-upper index	x position of	an array(initial	iy size-1)		

Page 4 / 23

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

	Example: Consider Input list 0, 1, 2, 9, 10, 11, 15, 20, 46, 72 Search element:11 \rightarrow Iteration 1 Lower = 0 Upper = 9mid = (lower + upper) / 2= (0 + 9/2)= 4.5 Index Position	Example
		2M
	0 1 2 3 10 11 15 20 46 72	
(b)	$ind ! = 11$ $mid ! = 11$ $mid : SE; Lower = mid + 1$ $\rightarrow Iteration 2$ $Lower = 5 Upper = 9 mid = (Lower + Upper) / 2 = (5 + 9) / 2 = 7$ $ind ! = 11$ $mid ! = 15$ Number is found $ind ! = 15$	4M
	(Note: create_list and addatbeg are optional)	
Ans.	<pre>#include<stdio.h> #include<conio.h> #include<malloc.h></malloc.h></conio.h></stdio.h></pre>	Correct logic 2M
	<pre>void create_list(int); void addatbeg(int); void display(); struct node</pre>	Correct syntax 2M

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

int info;

struct node *next; }*start=NULL;

{

	void main()	
	{	
	int m;	
	clrscr();	
	printf("enter data value\n");	
	scanf("%d",&m);	
	create_list(m);	
	printf("enter data value\n");	
	scanf("%d",&m); create_list(m); printf("enter data value\n"); scanf("%d",&m); addatbeg(m);	
	addatbeg(m);	
	display();	
	getch();	
	}	
	void create_list(int data)	
	struct node *tmp,*q;	
	tmp=malloc(sizeof(struct node));	
	tmp->info=data;	
	tmp->next=NULL;	
	start=tmp;	
	}	
	,	
	void addatbeg(int data)	
	{	
	struct node *tmp;	
	tmp=malloc(sizeof(struct node));	
	tmp->info=data;	
	tmp->next=start;	
	start=tmp;	
	1 ′ }	
	,	
	void display()	
	{	
1		1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 2

22317

	<pre>struct node *q; if(start==NULL) { printf("list is empty\n"); } q=start; printf("list is:\n"); while(q!=NULL) { printf("%d\t",q->info); q=q->next; } </pre>	
(c) Ans.	Draw and explain construction of circular queue. A queue, in which the last node is connected back to the first node to form a cycle, is called as circular queue. $7 \qquad 0 \qquad \text{Front}$	4M Draw 1M
	The above diagram represents a circular queue using array. It has rear pointer to insert an element and front pointer to delete an element. It works in FIFO manner where first inserted element is deleted first. Initially front and rear both are initialized to -1 to represent queue empty. First element inserted in circular queue is stored at 0 th index position pointed by rear pointer. For the very first element, front pointer is also set to 0 th position. Whenever a new element is inserted in a queue rear pointer is incremented by one. If rear is pointing to max-1 and no element is present at 0 th position then rear is set to 0 th position to continue cycle. Before inserting an element, queue full condition is checked. If rear is set to max-1 position and front is set to 0 then queue is full. Otherwise if rear =front+1 then also queue is full.	Explana tion 3M

Page 7 / 23

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

22317 **Subject Code:** If queue is full then new element cannot be added in a queue. For deletion, front pointer position is checked and queue empty condition is checked. If front pointer is pointing to -1 then queue is empty and deletion operation cannot be performed. If queue contains any element then front pointer is incremented by one to remove an element. If front pointer is pointing to max-1 and element is present at 0th position then front pointer is initialize to 0th position to continue cvcle. Circular queue has advantage of utilization of space. Circular queue is full only when there is no empty position in a queue. Before inserting an element in circular queue front and rear both the pointers are checked. So if it indicates any empty space anywhere in a queue then insertion takes place. Explain indegree and outdegree of a graph with example. **4M (d) Indegree of node:** It is number of edges coming towards a specified Ans. node i.e. number of edges that have that specified node as the head is Each known as indegree of a node. termexplanat Outdegree of node: It is number of edged going out from a specified ion 1M node i.e. number of edges that have that specified node as the tail is known as outdegree of a node In undirected graph each edge is bidirectional so each edge coming towards node is also going out of that node. Due to this indegree and outdegree of a node is same number. In indirected graph, each edge is having direction associated with it, so indegree and outdegree depends on the direction. Example:в Each example *1M*

Indegree of node A=1 Outdegree of node A=2

Page 8 / 23

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subj	ject: Data	Structure Using 'C' Subject Code: 2	2317
		Indegree of node B=3 Outdegree of node B=2	
		Indegree of node $C=2$ Outdegree of node $C=1$	
		Indegree of node D=1 Outdegree of node D=3	
		Indegree of node $E=2$ Outdegree of node $E=1$	
3.	(a) Ans.	Attempt any THREE of the following: Write C program for performing following operations on array: insertion, display. #include <stdio.h> #include<conio.h></conio.h></stdio.h>	12 4M
		<pre>void main() { inta[10],x,i,n,pos; clrscr(); printf("Enter the number of array element\n"); scanf("%d",&n); printf("Enter the array with %d element\n", n); for(i=0;i<n;i++)< pre=""></n;i++)<></pre>	Correct program
		<pre>scanf("%d",&a[i]); printf("Enter the key value and its position\n"); scanf("%d%d",&x,&pos); for(i=n; i >= pos, i) {</pre>	4M
		a[pos-1]=x; printf("Array element\n "); for(i=0;i <n+1;i++) printf("%d\t",a[i]); getch(); }</n+1;i++) 	
	(b)	Evaluate the following postfix expression: 5, 6, 2, +, *, 12, 4, /, - Show diagrammatically each step of evolution using stack.	4M
	Ans.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: ²

le: 22317

	Scanned	Ope	erand	11	Ope	erand	12	V	alue	Sta	ck	7			
	Symbol									Cor	ntent				
	5									5					
	6									5,6					Correct
	2									5,6,	2				answer
	+	6			2			8		5,8					<i>4M</i>
	*	5			8			40)	40					
	12									40,	12				
	4									40,	12,4				
	/	12			4			3		40,1	3				
	-	40			3			37		37					
	Result of a	bove	e pos	tfix	expr	essi	on	eval	uati	on- 3	7				
(c)	Sort the fe										' usin	g qu	uick	sort.	4M
	Given nun		s 50,	2, 6	, 22,	3, 3	9,4	19,2	5, 18	, 5.					
Ans.	Given array	У													
									-	-					
	Array	50	2	6	22	2	3	39	49	9 2	5 1	8	5		~
	elements														Correct
	indexes	0	1	2	3		4	5	6		7 8	8	9		solve
															example
	Set l=0, h=														<i>4M</i>
	Initialize in							= 1-1	=-1						
	Traverse el	emer	nts fr	om	j=l to) j=h	-1								
	1 : 0 :	1 .'		: 1 .		.1		1. :			1	•		_	
	1. j=0 i=-	I SING	ce a[j]] >	pivot	ao 1	not	nıng	arra	y wil	i rema	un s	ame	e	
	A		T		<u> </u>							-		7	
	Array	50	2		6 2	22	3	39	49	9 2	5 1	8	5		
	elements					2	1	~			, ,	,	0	-	
	indexes	0	1		2	3	4	5	6		7 8	5	9		
	2 \cdot 1 \cdot		r:1 /		1. 1	•		1	(r:1	(1)				
	2. $j=1 \sin \alpha$		[]]<=	pivo	ot, do) 1++	an	d sw	/ap(a	[1], a	J])				
	i=0														
	Amor							<u> </u>							
	Array	2	50	6	22	3		39	49	25	18		5		
	elements indexes		1	2	3	Λ		5	6	7	0	-	0		
	maexes	0	1	2	3	4		5	6	/	8		9		

Page 10 / 23

Г

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Т

Subject Code:

22317

Array elements	2	50	6	22	2 3	39	49	25	5 18	3
indexes	0	1	2	3	4	5	6	7	8	
4. j=3 ,i=0	since	a[j]	> piv	vot do	noth	ing ar	ray w	ill ren	nain s	ame
Array elements	2	50	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	1	8	9
5. j=4, sinc i=1 Array									4.5	_
elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9
		•			Y		ľ			
Array	since 2	a[j] 3	> pi	vot d	o noth	iing ai 39	rray w 49	vill rei 25	nain 18	same
Array elements	2	3	6	22	50	39	49		18	5
elements indexes 7. j=6, i=1 Array	2 0	3 1	6 2	22	50 4	39 5	49 6	25 7	18 8	5 9
Array elements indexes 7. j=6, i=1	2 0 since	3 1	6 2 > pi	$\frac{22}{3}$	50 4 o noth	39 5	49 6 rray w	25 7 /ill rei	18 8 main	5 9 same
Array elements indexes 7. j=6, i=1 Array elements	2 0 since 2 0	3 1 3 1	6 2 6 2	22 3 vot d 22 3	50 4 50 4	39 5 ing at 39 5	49 6 rray w 49 6	25 7 vill rer 25 7	18 8 18 8	5 9 same 5 9

Page 11 / 23

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Τ

Subject Code: 22

22317

Т

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9
Now, 5 is at and all elem Similarly r following o <u>Output of p</u>	place vot) {2,3, t its of nents est of putpu	5 ,22 correst gree of that	ivot ,50,2 ect p eater	at co 39,49 lace. than	rrect ,25,18 All el 5 are	posit 3,6} // emen afterit	ion by 6 and ts sma	y swap 5 Swa Iler th	oping a apped an 5 ar	e befo
Array elements	2	3	5	22	50	39	49	25	18	6
indexes	0	1	2	3	4	5	6	7	8	9
Pass2 A[]={2,3} Array elements indexes	,	t=3 2 0		3 1						
a[]={22,50	,39,4	9,25	5,18,	6}piv	ot=6					
Array elements	6	_	50	39	49	25	18	22		
	3		4	5	6	7	8	9		
indexes	U									
		5,18	<u>3,22</u>]	pivo	=22					
indexes	,49,2	2 <u>5,18</u> 8		}pivot 22	=22	9	25		50	39

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 2

22317

	a[]={18}pi	vot=18								
	Array elements	18	22							
	indexes	4	5							
	a[]={49,25	,50,39},p	ivot=39							
	Array elements	25	39	50	0	49	9			
	indexes	6	7	8	3	9	1			
	a[]={25}, p	oivot=25	1				0			
	Array elements	25	39							
	indexes	6	7							
	a[]={50,49	},pivot=4	9							
	Array elements	49	50							
	indexes	8	9							
						11 h a				
	Final sorte Array									
	elements	2 3	5 6		22	25	39	49	50	
	indexes	0 1	2 3	4	5	6	7	8	9	
(d)	From the f	ollowing	graph,	compl	ete t	he an	nswer	s:		4 M
	•			-	Ð					
		DE	- Annak		ne.		terfa.V			
	toéda i	/		(21)	/	nger (
		5	-19	```			145			
		0			31		. U			
		9	lqaq <u>a</u> beler							
		ee of nod								
	(ii) Adjace	ent node	of 19							

Page 13 / 23

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

			8								
		· /	ath of 31 accessor of node 67								
	Ans.	(i) Ind	egree of node 21: node 1, 7, 19								
		(i1) Adjacent node of 19: node 1,21									
		(iii) Path of 31: Path1: 1-21-31 Path2: 1-7-21-31 Path3: 1-7-21-31									
		isc	accessor of node 67: No Succes plated node or not connected no	de in node.							
4.			pt any THREE of the followi		12						
	(a)			h and sequential search (linear	4M						
	Ans.	search	ı).								
	7115.	Sr.	Binary Search	Sequential search (linear							
		No.		search)	Any						
		1	Input data needs to be sorted in Binary Search	Input data need not to be sorted in Linear Search.	four points						
		2	In contrast, binary search	A linear search scans one	1M each						
			compares key value with the	item at a time, without							
			middle element of an array	jumping to any item.							
			and if comparison is unsuccessful then cuts down search to half.								
		3	Binary search implements	Linear search uses sequential							
			divide and conquer	approach.							
			approach.								
1	1	4	In binary search the worst	In linear search, the worst							
		4	-	,							
		4	case complexity is O(log n)	case complexity is O(n),							
			case complexity is O(log n) comparisons.	case complexity is O(n), comparisons.							
		5	case complexity is O(log n)	case complexity is O(n),							

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subj	ject: Data	Structure Using 'C' Subject Code: 22	317
	(b)	Draw the tree structure of the following expressions: (i) $(2a+5b)^3 * (x-7v)^4$ (ii) $(a-3b) * (2x-v)^3$	4 M
	Ans.	(i) $(2a+5b)^3 * (x-7y)^4$ (ii) $(a-3b) * (2x-y)^3$ (i) $(2a+5b)^3 * (x-7y)^4$	
		(ii) $(a - 3b) * (2x - y)^3$	Each correct tree structur e 2M
		(2) (x)	
	(c) Ans.	Create a singly linked list using data fields 15, 20, 22, 58, 60. Search a node 22 from the SLL and show procedure step-by-step with the help of diagram from start to end.	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 2

22317

		Scanned	Operand 1	Operand 2	Value	Stack					
		Symbol				Content	_				
		5				5		Each			
		2				5,2		correct			
		3				5,2,3		step 1M			
		4				5,2,3,4					
		+	4	3	12	5,2,12					
		*	12	2	24	5,24					
		-	24	5	19	19					
	(e)			xpression eva		- 19 m the beginni	ng of a	4 M			
	(C)	circular li		o ucicic a i		in the beginn	ing of a	-TIVI			
	Ans.		iikcu iist.								
	1 11150	Algorithm	to delete :	a node from	the be	eginning of a	circular				
		linked list					cii cului				
			ne function de	elatbeg()							
		1. Start									
			e struct node	*tmp.*a:				Correct algorith			
		 Set q=last->link; 									
		4. While $(q! = last)$									
		Do									
		tmp = 0	a: // Identifi	ies beginning	node of	Circular Linked	List				
		-	-			field before					
			ed node				0				
		free(tm	ip);	// Delete the b	beginnin	g node					
		End of	1 / /		0	0					
		5. last=N	ULL; // Set]	last= NULL i	f only or	ne node is prese	ent in the				
		Circular Linked List									
		6. End of	function								
5.		Attempt a	ny TWO of t	the following	:			12			
	(a)	Show the	effect of PU	SH and PO	P opera	tion on to the	stack of	6M			
		size 10. Th	ne stack cont	ains 40, 30, 3	52, 86, 3	9, 45, 50 with 5	50 being				
		-		w diagramm	natically	the effect of:					
		(i) PUSE	I 59 ((ii) PUSH 85	i						
		(iii) POP		(iv) POP							
		(v) PUSH		vi) POP							
		Sketch the	e final struc	ture of stac	k after	performing th	e above				

SUPPORT OF TROUBULE

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

Page 18 / 23

Г

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Sub	ject: Data	a Structure Using 'C' Subject Code: 22	2317	
	(c) Ans.	Write an algorithm to count number of nodes in singly linked list. Let start is pointer variable which always stores address of first node in single linked list. If single linked list is empty then start will point to NULL. q is pointer variable used to store address of nodes in single linked list. Step 1: Start Step 2: [Assign starting address of single linked list to pointer q] q=start Step 3: [Initially set count of nodes in Linked list as zero] count=0 Step 4: [Check if Linked list empty or not] if start==NULL Display "Empty Linked List" go to step 6. Step 5: [Count number of nodes in single linked list] while q!=NULL count++ and q=q->next; Step 6: Display count (total number of nodes in single linked list) Step 7: stop	6N Corr algor m 6	ect rith
6.	(a) Ans.	Attempt any TWO of the following: Sort the following numbers in ascending order using Bubble sort. Given numbers: 29, 35, 3, 8, 11, 15, 56, 12, 1, 4, 85, 5 & write the output after each interaction. Pass 1Enter no of elements :12Enter array elements :29 35 3 8 11 15 56 12 1 4 85 5Unsorted Data: 29 35 3 8 11 15 56 12 1 4 85 5	12 6N	

Page 19 / 23

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

		1
After pass 1 : After pass 1 : Pass 2	2935381115561214855293 $\underline{35}$ 811155612148552938 $\underline{35}$ 1115561214855293811 $\underline{35}$ 1556121485529381115 $\underline{35}$ 56121485529381115 $\underline{35}$ 5612148552938111535 $\underline{56}$ 1214855293811153512 $\underline{56}$ 148552938111535121 $\underline{56}$ 485529381115351214 $\underline{56}$ 85529381115351214 $\underline{56}$ 85529381115351214 $\underline{56}$ 85529381115351214 $\underline{56}$ 85529381115351214 $\underline{56}$ $\underline{85}$ 52938111535	Correct passes 6M (For 4 passes 3M shall be awarded
After pass 2 : After pass 2 :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
After pass 3 : After pass 3 : Pass 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
After pass 4 : After pass 4 : After pass 4 : After pass 4 :	3 8 11 15 12 1 4 29 5 35 56 85 3 8 11 15 12 1 4 29 5 35 56 85 3 8 11 15 12 1 4 29 5 35 56 85 3 8 11 15 12 1 4 29 5 35 56 85 3 8 11 12 15 1 4 29 5 35 56 85	

Page 20 / 23

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

	After pass 4 :	3	8	11	12	1	<u>15</u>	4	29	5	35	56	85		
	After pass 4 :	3	8	11	12	1	4		29		35	56	85		
	After pass 4 :	3			12	1	4	15		5		56	85		
	After pass 4 :			11	12	1	4	15				56	85		
	Ĩ														
	Pass 5														
	After pass 5 :	3	8	11	12	1	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	12	1	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	<u>12</u>	1	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	1	<u>12</u>	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	1	4	<u>12</u>	15	5	29	35	56	85		
	After pass 5 :	3	8	11	1		12	<u>15</u>	5	29	35	56	85		
	After pass 5 :	3	8	11	1	4	12		<u>15</u>	29	35	56	85		
	_										Y				
	Pass 6														
							6								
	After pass 6 :	3	8	11	1	4	12	5	15	29	35	56	85		
	After pass 6 :	3	8	<u>11</u>	1	4	12	5	15	29	35	56	85		
	After pass 6 :	3	8	1	<u>11</u>	4	12	5	15	29	35	56	85		
	After pass 6 :	3	8	1	4	11	12		15	29	35	56	85		
	After pass 6 :	3	8	1	4	11	<u>12</u>	5	15	29	35	56	85		
	After pass 6 :	3	8		4	11	5	<u>12</u>	15	29	35	56	85		
	Pass 7														
	After pass 7 :		8			11		12		29	35	56	85		
	After pass 7 :		1	8		11			15	29	35	56	85		
	After pass 7 :	3		4	8				15	29	35	56	85		
	After pass 7 :	3		4		<u>11</u>			15	29	35	56	85		
	After pass 7 :	3	1	4	8	5	<u>11</u>	12	15	29	35	56	85		
	Pass 8														
		_	-			_									
	After pass 12 :	<u>1</u>	3	4	8	5	11	12	15	29	9 35	5 56	5 85		
	Sorted elemen	nts a	are	e 1	3	4	8	5 1	1 1	2	15 2	29 3	35 50	5 85	
(b)	Evolució the f	Fall		ina	noc	-C	0.00		aio-						 <u>M</u>
(b)	Evaluate the f	UII(UWI	mg	hoa	IIX	exp	res	5101	1.					6M
•	57+62-*														
Ans.															

SUPPORT OF TROPPORT

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22

22317

	Symbols to be scanned 5 7 + 6 2 - *	4	S ^r 3	<u>ГАСК</u> 2 2	1 7 6 6 4	0 5 5 12 12 12 12 12 48	Expression Evaluation and Result 7+5=12 6-2=4 12*4		Correct evaluati ve 6M	
(c) Ans.	Create a singly linked list using data fields 90, 25, 46, 39, 56. Search a node 40 from the SLL and show procedure step-by-step with the help of diagram from start to end. To Search a data field in singly linked list, need to start searching the data field from first node of singly linked list. ORIGINAL LIST: 30 + 25 + 46 + 39 + 56 + 56 + 56 + 56 + 56 + 56 + 56 + 5									
	SEARCHING STEP 1: Compare 40 w 40!=90,									

Page 22 / 23

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228